TABLE 4. COMPARISON OF CALCULATED AND EXPERIMENTAL SATURATED MOLAR LIQUID VOLUMES OF BINARY MIXTURES IN THE CRITICAL REGION

(Reduced temperature 0.93 to 1.00)

	v_{12} , cu. ft./lb. mole	°R.	° ^{<i>T</i>} ,	Pressure range, lb./sq. in. abs.	(critical)	% Deviation	
System*						Avg.	Max.
(1) (2)							
n-Butane-carbon dioxide	-1.25	- 46.4	100 160 220	800 to 1,057 900 to 1,020 600 to 942	0.954 0.713 0.498	2.3 0.7 0.7	4.3 1.4 3.0
Propane-methane	-0.875	89.7	40 100 160	1,200 to 1,474 950 to 1,353 384 to 1,020	0.7459 0.5882 0.3228	1.6 1.0 1.2	7.6 4.9 5.9
n-Butane-methane	-1.96	101.3	100 130 160 190 220 250	1,700 to 1,912 1,600 to 1,876 1,400 to 1,810 1,100 to 1,698 800 to 1,520 327.7 to 1,264	0.7236 0.6718 0.6165 0.5503 0.4722 0.3602	1.6 1.6 2.2 3.4 4.6 3.3	4.5 3.4 2.8 5.1 9.5 10.3
n-Pentane-methane	- 2.35	141.4	100 160 220 280 340	2,300 to 2,455 2,100 to 2,338 1,600 to 2,081 900 to 1,610 330 to 1,025	0.8236 0.7665 0.6705 0.5211 0.2950	2.5 2.6 3.1 2.3 0.9	5.2 3.7 4.7 3.2 2.1
Propylene-ethane	-0.273	-4.7	100 160	470 to 722 455 to 705	0.9300 0.3500	0.8 2.8	2.5 10.5
Benzene-propane	-0.690	22.1	280 340 400	630 to 750 710 to 850 630 to 850	† † †	0.8 1.4 0.7	1.3 1.6 2.8
Hydrogen sulfide-methane	- 0.958	29.3	40 100 160	1,770 to 1,949 1,500 to 1,907 779 to 1,660	0.5500 0.3880 0.2090	3.1 2.2 1.6	4.2 5.2 7.3

*k12 given in Table 1. Experimental data of binary systems are taken from Sage et al. (24, 25). [†]No critical composition reported.

(26)

$$D(T_R) = \exp\left[(T_R - 1) \left(2901.01 - 5738.92 \ T_R + 2849.85 \ T_R^2 + \frac{1.74127}{1.01 - T_R} \right) \right]$$

Equation (26) was found to be sufficiently general for all systems investigated. The reducing parameter for T_R in Equation (26) is the corrected pseudocritical temperature T_{cM}' rather than the true critical temperature which is adequate at the critical point only. As a result T_{cM} appears on both sides of Equation (22) and iteration is required to solve for T_{cM} . This is best done by rewriting Equation (22):

$$\left[\frac{(T/T_{cM})}{T_R} - 1\right] - \left[\frac{(T/T_{cM})}{(T/T_cT)} - 1\right] \mathcal{D}(T_R) = 0 \qquad (27)$$

Equation (27) has only one unique solution for $T_R < 1.0$ which can be readily found by a numerical technique (for example, Reguli-falsi iteration with variable pivoting points). The method usually converges in a few iterations. From Equation (23), v'_{cM} can then be obtained by direct substitution.

Equations (22) and (23) may be considered as more general pseudocritical rules applicable over the whole temperature range up to the critical point. With the corrected pseudocritical constants, the saturated molar volumes of liquid mixtures can be calculated from Equations (5) and (6) in the manner discussed before.

Figure 8 compares reduced temperatures and reduced volumes calculated for the system n-butane-carbon dioxide at 100°F., with the corrected pseudocriticals, Equations (22) and (23), and the uncorrected pseudocriticals, Equations (7) and (8). Whereas T_R and ν_R based on corrected pseudocriticals converge to the right limit at the critical composition, those based on the uncorrected pseudocriticals at-

Fig. 8. Reduced temperature and reduced volume in the critical region with corrected and uncorrected pseudocritical constants (n-butane-carbon dioxide at 160°F.).

Vol. 13, No. 6

Page 1105

ition en- $= v_{cT}$ at cal func-1.0 1.0

ited liquid

system at

er, 1967

tions (7) avs con-. In the udocriti-

he prox-

ving, we ects the critical

cal point used as ticals of

(22)

(23)iture and The sec-

(22) and ple mix- (T_R) reppoint; it

(24)

(25)ons (22) tions (7)

J